1. PAMoC
  2. User's Manual, Click here to get a list of volumes,
    and eventually click an item to change the current volume.
  3. List of keywords,Click here to get a list of chapters,
    and eventually click an item to change the current chapter.
  4. adp.Click here to get the List of Keywords.

Atomic Parameters for Dispersion Energy:   ADP

Synopsis

[-](AtmParDsp | apde | adp)   1|2|3|4|5|6|7|8|9|10

Description

This keyword controls calculation of dispersion interaction energies, using simple and transferable atom-atom potentials. It specifies the set of atomic parameters required for calculation of atom-atom dispersion interaction energies (ADP's). Available sets are reported in the following table:

Dispersion Atomic Parameters (the default choice is highlighted)
Combination rule Option Meaning Availability
geometric-mean

C6,αβ = C6,αC6,β
1 Spackman Atomic Parameters (SAP's). [1"Atom-atom potentials via electron gas theory"
Mark A. Spackman   J. Chem. Phys. 1986, 85, 6579-6586.
]
p-block elements
2 Spackman Atomic Parameters (SAP's), [1"Atom-atom potentials via electron gas theory"
Mark A. Spackman   J. Chem. Phys. 1986, 85, 6579-6586.
] scaled by factor 0.716.
p-block elements
3 Grimme Atomic Parameters (GAP's). [2"Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction"
S. Grimme   J. Comput. Chem. 2006, 27, 1787-1799.
]
from Z = 1 to Z = 94
4-5 Least-squares refined atomic coefficients, C6. H, C, N, O, S
London [3F. London   Z. Phys. Chem. (Leipzig) B 1930, 11, 222.]
C6,αβ = 3 2 αα αβ Iα Iβ Iα + Iβ
6 Least-squares refined atomic polarizabilities, α.  
Wu-Yang-Slater-Kirkwood [4"The van der Waals forces in gases"
J. C. Slater, J. G. Kirkwood   Phys. Rev. 1931, 37, 682-697.
, 5"Empirical correction to density functional theory for van der Waals interactions"
Q. Wu, W. Yang   J. Chem. Phys. 2002, 116, 515-524.
]

C6,αβ = 2 (C6,α C6,β) (Neff,α Neff,β) (C6,α Neff,β) + (C6,β Neff,α)
7 Least-squares refined atomic coefficients, C6, with atomic effective numbers of electrons, Neff, from Halgren's compilation. [6"Representation of van der Waals (vdW) interactions inmolecular mechanics force fields: potential form, combination rules, and vdW parameters"
T. A. Halgren   J. Am. Chem. Soc. 1992, 114, 7827-7843.
]
H, C, N, O, S
8 Least-squares refined atomic coefficients, C6, using the number of valence electrons for the atomic effective numbers of electrons, Neff = Nv. H, C, N, O, S
Slater-Kirkwood [4"The van der Waals forces in gases"
J. C. Slater, J. G. Kirkwood   Phys. Rev. 1931, 37, 682-697.
]
C6,αβ = 3 2
αα αβ
αα Neff,α + αβ Neff,β
9 Least-squares refined atomic polarizabilities, α, with atomic effective numbers of electrons, Neff, from Halgren's compilation [6"Representation of van der Waals (vdW) interactions inmolecular mechanics force fields: potential form, combination rules, and vdW parameters"
T. A. Halgren   J. Am. Chem. Soc. 1992, 114, 7827-7843.
]
H, C, N, O, S
10 Least-squares refined atomic polarizabilities, α, using the number of valence electrons for the atomic effective numbers of electrons, Neff = Nv H, C, N, O, S

Remarks

The fitting set of least-square refined ADP's comprises 87 intermolecular C6 coefficients: 77 from experimental DOSD's [8Sources of experimental DOSD's used in the fitting set for least-squares refinement of atomic dispersion parameters, C6.] and 10 from ab-initio CCSD(T)/aug-cc-pVDZ and time-dependent Hartree-Fock response theory calculations of nucleic acid base pairs. [7"Ab initio calculations of dispersion coefficients for nucleic acid base pairs"
T.P. Haley, E.R. Graybill, S.M. Cybulski   J. Chem. Phys. 2006, 124, 204301-204307.
]

Related Keywords

Related Topics

References

  1. "Atom-atom potentials via electron gas theory"
    Mark A. Spackman J. Chem. Phys. 1986, 85, 6579-6586.
  2. "Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction"
    S. Grimme J. Comput. Chem. 2006, 27, 1787-1799.

  3. F. London Z. Phys. Chem. (Leipzig) B 1930, 11, 222.
  4. "The van der Waals forces in gases"
    J. C. Slater, J. G. Kirkwood Phys. Rev. 1931, 37, 682-697.
  5. "Empirical correction to density functional theory for van der Waals interactions"
    Q. Wu, W. Yang J. Chem. Phys. 2002, 116, 515-524.
  6. "Representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters"
    T. A. Halgren J. Am. Chem. Soc. 1992, 114, 7827-7843.
  7. "Ab initio calculations of dispersion coefficients for nucleic acid base pairs"
    T.P. Haley, E.R. Graybill, S.M. Cybulski J. Chem. Phys. 2006, 124, 204301-204307.
  8. Sources of experimental DOSD's used in the fitting set for least-squares refinement of atomic dispersion parameters, C6.
    1. CH4:
      Thomas, G.F.; Meath, W.J. Mol. Phys. 1977, 34, 113-125.
      Margoliash, D. J.; Meath, W. J. J. Chem. Phys. 1978, 68, 1426-1431.
    2. C2H6, C3H8, C4H10, C5H12, C6H14, C7H16, C8H18:
      Jhanwar, B.L.; Meath, W.J.; MacDonald, J.C.F. Can. J. Phys. 1981, 59, 185-197.
    3. C2H4, C3H6, C4H8:
      Jhanwar, B.L.; Meath, W.J.; MacDonald, J.C.F. Can. J. Phys. 1983, 61, 1027-1034.
      Kumar, A.; Jhanwar, B.L.; Meath, W. Can. J. Chem. 2007, 85, 724-737.
    4. C2H2, C6H6:
      Kumar, A.; Meath, W.J. Mol. Phys. 1992, 75, 311-324.
    5. C2H5OH, C3H7OH:
      Jhanwar, B.L.; Meath, W.J. Can. J. Chem. 1984, 62, 373-381.
    6. CH3NH2:
      Burton, G.R.; Chan, W.F.; Cooper, G.; Brion, C.E.; Kumar, A.; Meath, W.J. Can. J. Chem. 1994, 72, 529-546.
    7. CO2:
      Jhanwar, B.L.; Meath, W.J. Chem. Phys. 1982, 67, 185-199.
    8. NH3:
      Zeiss, G.D.; Meath, W.J.; MacDonald, J.C.F.; Dawson, D.J. Can. J. Phys. 1977, 55, 2080-2100.
      Burton, G.R.; Chan, W.F.; Cooper, G.; Brion, C.E.; Kumar, A.; Meath, W.J. Can. J. Chem. 1993, 71, 341-351.
    9. H2O:
      Zeiss, G.D.; Meath, W.J.; MacDonald, J.C.F.; Dawson, D.J. Can. J. Phys. 1977, 55, 2080-2100.
    10. H2S:
      Pazur, R.J.; Kumar, A.; Thuraisingham, R.A.; Meath, W.J. Can. J. Chem. 1988, 66, 615-619.
    11. OCS, SO2, CS2:
      Kumar, A.; Meath, W.J. Can. J. Phys. 1985, 63, 417-427.