Given the 3D structure of a molecule with N atoms and total charge
Q, the Electronegativity Equalization Method
(EEM) estimates the partial atomic charges
q1 …
qN and the average molecular electronegativity
χ via a set of coupled linear
equations:
Within EEM, the electronegativity χi
of each atom i in a molecule can be approximated as a linear function
of several terms:
χi =
(χ
0 i
+
Δχi) +
2 (η
0 i
+ Δηi) qi + kN∑i≠j
qj
rij
(3)
The first term is the electronegativity of the isolated
atom χ0 i,
empirically corrected for the presence of the molecular environment
(Δχi).
The second term is the product between the charge of the atom
qi and the hardness of the isolated atom
η0 i,
empirically corrected for the presence of the molecular environment
(Δηi).
The last term, k ∑ i≠j(qjrij),
accounts for the electrostatic interaction with every other charged atom
j in the molecule. k is an adjusting factor first introduced
by Yang and Shen. [12Yang, Z.; Shen, E. Science in China. Series B, Chemistry1995, 38,
521−528.]
Setting Ai =
χ0 i +
Δχi and
Bi = 2
(η0 i +
Δηi), the molecular electronegativity can
be formally expressed as
χ = Ai +
Bi qi + kN∑i=1
qj
rij
(4)
Additionally, the total molecular charge Q is the sum of all partial
atomic charges qi:
Q =
N∑i=1qi
(5)
Taken all together, eqs (2), (4), and (5) can be expressed as a system
of coupled linear equations, eq (1), from which the partial atomic charges
qi and the molecular electronegativity
χ can be calculated, provided
that the rest of the terms (Q, ri,j, k, Ai,
Bi) are known.
Remarks
The main limitation of the EEM approach is
inherent to its empirical nature. EEM relies on empirical
parameters fitted to reference QM data. As such, when employing
a particular set of EEM parameters, it is important to consider
the nature of the reference QM data, as well as the particular
fitting strategy used in the development of the set of EEM
parameters.
In general, one cannot expect that EEM charges will outperform QM
charges.
References
"Electronegativity Equalization Method for the Calculation of
Atomic Charges in Molecules"
Mortier, W. J.; Ghosh, S. K.; Shankar, S.
J. Am. Chem. Soc.1986, 108, 4315-4320.
"Rapid Calculation of Accurate Atomic Charges for Proteins via the
Electronegativity Equalization Method"
Ionescu, Crina-Maria; Geidl, Stanislav;
Svobodová Vařeková, Radka; Koča, Jaroslav
J. Chem. Inf. Model2013, 53, 2548-2558.
"AtomicChargeCalculator: interactive web‐based calculation of
atomic charges in large biomolecular complexes and drug-like
molecules"
Ionescu, Crina-Maria; Sehnal, David; Falginella, Francesco L.;
Pant, Purbaj; Pravda, Lukáš Bouchal, Tomáš
Svobodová Vařeková, Radka; Geidl, Stanislav;
Koča, Jaroslav
J. Cheminform2015, 7, 50-62.
"An Interpretation of Bond Lengths and a Classification of
Bonds" Sanderson, R. T. Science1951, 114,
670−672.
"Partial Charges on Atoms in Organic Compounds"
Sanderson, R. T. Science1955, 121,
207−208.
"Electronegativity: The density functional viewpoint"
Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E.
J. Chem. Phys.1978, 68, 3801−3807.
"Molecular Electronegativity in Density Functional Theory"
Politzer, P.; Weinstein, H.
J. Chem. Phys.1979, 71, 4218-4220.
"On the Geometric Mean Principle for Electronegativity
Equalization"
Parr, R. G.; Bartolotti, L.
J. Am. Chem. Soc.1982, 104, 3801-3803.
"Absolute hardness: companion parameter to absolute
electronegativity"
Parr, R. G.; Pearson, R. G.
J. Am. Chem. Soc.1983, 105, 7512−7516.
"A Study of Electronegativity Equalization"
Nalewajski, R.
J. Phys. Chem.1985, 89, 2831-2837.
"Molecular electronegativity in density functional
theory (I)" Yang, Z.; Shen, E.
Science in China. Series B, Chemistry1995, 38,
521−528.
"The Electronegativity Equalization Method I: Parametrization and
Validation for Atomic Charge Calculations" Bultinck, P.; Langenaeker,
W.; Lahorte, P.; De Proft, F.; Geerlings, P.; Waroquier, M.; Tollenaere,
J. P. J. Phys. Chem. A2002, 106, 34, 7887–7894.
DOI: 10.1021/jp0205463
"The Electronegativity Equalization Method II: Applicability of
Different Atomic Charge Schemes" Bultinck, P.; Langenaeker, W.;
Lahorte, P.; De Proft, F.; Geerlings, P.; Van Alseboy, C.; Tollenaere,
J. P. J. Phys. Chem. A2002, 106, 34, 7895–7901.
DOI: 10.1021/jp020547v
"High-Speed Calculation of AIM Charges through the
Electronegativity Equalization Method" Bultinck, P.; Vanholme, R.;
Popelier, P. L. A.; De Proft, F.; Geerlings, P. J. Phys. Chem. A2004, 108, 46, 10359-10366. DOI: 10.1021/jp046928l