ADP | DAP | DISPAR

Synopsis

[-]adp|dap|dispar   1|2|3|4|5|6|7|8|9|10

Description

This keyword specifies the set of Dispersion Atomic Parameters (DAP) required for calculation of atom-atom dispersion interaction energies.

The following sets are available:

Dispersion Atomic Parameters (default choice highlighted)
Combination rule Formula Keyword value Meaning Availability
geometric-mean 1 p-block elements
2 scaled SAP's (scale factor = 0.716) p-block elements
3 from Z = 1 to Z = 94
4-5 least-squares refined AP's (C6 atomic coefficients) H, C, N, O, S
London 6  
7 H, C, N, O, S
8 least-squares refined AP's (C6 atomic coefficients) with the number of valence electrons as atomic effective numbers of electrons, Neff = Nv H, C, N, O, S
9 H, C, N, O, S
10 least-squares refined AP's (atomic polarizabilities) with the number of valence electrons as atomic effective numbers of electrons, Neff = Nv H, C, N, O, S

Aim

Calculation of dispersion interaction energies, using simple and transferable atom-atom potentials.

Related Keywords

dfd|damp|dampdsp  specifies the function which has to be used to dampen atom-atom dispersion energies.

References
  1. "Atom-atom potentials via electron gas theory"
    Mark A. Spackman
    J. Chem. Phys. 1986, 85, 6579-6586.

  2. "Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction"
    S. Grimme
    J. Comput. Chem. 2006, 27, 1787-1799.

  3. F. London
    Z. Phys. Chem. (Leipzig) B 1930, 11, 222.

  4. "The van der Waals forces in gases"
    J. C. Slater, J. G. Kirkwood
    Phys. Rev. 1931, 37, 682-697.

  5. "Representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters"
    T. A. Halgren
    J. Am. Chem. Soc. 1992, 114, 7827-7843.

  6. "Empirical correction to density functional theory for van der Waals interactions"
    Q. Wu, W. Yang
    J. Chem. Phys. 2002, 116, 515-524.

  7. "Ab initio calculations of dispersion coefficients for nucleic acid base pairs"
    T.P. Haley, E.R. Graybill, S.M. Cybulski
    J. Chem. Phys. 2006, 124, 204301-204307.

  8. (1) CH4:
    Thomas, G.F.; Meath, W.J. Mol. Phys. 1977, 34, 113-125.
    Margoliash, D. J.; Meath, W. J. J. Chem. Phys. 1978, 68, 1426-1431.
    (2) C2H6, C3H8, C4H10, C5H12, C6H14, C7H16, C8H18:
    Jhanwar, B.L.; Meath, W.J.; MacDonald, J.C.F. Can. J. Phys. 1981, 59, 185-197.
    (3) C2H4, C3H6, C4H8:
    Jhanwar, B.L.; Meath, W.J.; MacDonald, J.C.F. Can. J. Phys. 1983, 61, 1027-1034.
    Kumar, A.; Jhanwar, B.L.; Meath, W. Can. J. Chem. 2007, 85, 724-737.
    (4) C2H2, C6H6:
    Kumar, A.; Meath, W.J. Mol. Phys. 1992, 75, 311-324.
    (5) C2H5OH, C3H7OH:
    Jhanwar, B.L.; Meath, W.J. Can. J. Chem. 1984, 62, 373-381.
    (6) CH3NH2:
    Burton, G.R.; Chan, W.F.; Cooper, G.; Brion, C.E.; Kumar, A.; Meath, W.J. Can. J. Chem. 1994, 72, 529-546.
    (7) CO2:
    Jhanwar, B.L.; Meath, W.J. Chem. Phys. 1982, 67, 185-199.
    (8) NH3:
    Zeiss, G.D.; Meath, W.J.; MacDonald, J.C.F.; Dawson, D.J. Can. J. Phys. 1977, 55, 2080-2100.
    Burton, G.R.; Chan, W.F.; Cooper, G.; Brion, C.E.; Kumar, A.; Meath, W.J. Can. J. Chem. 1993, 71, 341-351.
    (9) H2O:
    Zeiss, G.D.; Meath, W.J.; MacDonald, J.C.F.; Dawson, D.J. Can. J. Phys. 1977, 55, 2080-2100.
    (10) H2S:
    Pazur, R.J.; Kumar, A.; Thuraisingham, R.A.; Meath, W.J. Can. J. Chem. 1988, 66, 615-619.
    (11) OCS, SO2, CS2:
    Kumar, A.; Meath, W.J. Can. J. Phys. 1985, 63, 417-427.