DbgMom | DbgNuMom | DbgMoN

Synopsis

[-]dbgmom | dbgnumom | dbgmon

Description

This logical keyword requires evaluation of electrostatic multipole moments of Stewart's pseudoatoms by numerical volume integration.

Aim

It is intended for both debugging purposes and a better understanding of the mutual relationships between the population parameters of a charge-density multipole expansion and the definition of multipole moments of the charge density itself.

Example

When the option is set, the output produced by PAMoc looks like this:

 *******************************************************************************
 PAMOC                            RV 2014-03-01                            PAMOC

                  Stewart partitioning of the Electron Density
                    in fuzzy atomic components (pseudoatoms)
          <LTLALA>   23 K; Hpol 27.6.92; Uij H (ADPH 8.6.93)  <LTLALA>

 M.Barzaghi@istm.cnr.it                                      pamoc.cloudvent.net
 *******************************************************************************


 Conversion factors of multipole moments
 -------------------------------------------------------------------------------
                      from atomic units       from atomic units     from A^l
                      to standard units            to A^l      to standard units
               -----------------------------------------------------------------
 Dipole         2.54177 Debye                    0.52918 A          4.80324
 Quadrupole     1.34504 Debye-Ang = Buckingham   0.28003 A^2        4.80324
 Octupole       0.71177 Debye-Ang**2             0.14818 A^3        4.80324
 Hexadecapole   0.37665 Debye-Ang**3             0.07842 A^4        4.80324
 -------------------------------------------------------------------------------



 -------------------------------
 Volume integration for atom C1
 -------------------------------
 _________________________________________________________________________________________________________________________________________________________________________

 TABLE I  -  Spherical harmonic multipole moments of order l = 0, 1, 2, 3, 4.
 _________________________________________________________________________________________________________________________________________________________________________
                 |                           |       |     __           |     __             |      __             |              |            |            |            |
                 |                           |       |    /             |    /               |     /               |              |            |            |            |
                 |                           |       |   / A(l,m)dV =   |   / A(l,m)**2 dV = |    / |A(l,m)|dV =   |              |            |            |            |
           VALRAY|                           |       |__/               |__/                 | __/                 |              |            |            |            |
            Pop's|              <A(l,m)*r**l>| C(l,m)|4*pi*d(l,0)*d(m,0)|[M(l,m)*C(l,m)]^(-2)| [L(l,m)*C(l,m)]^(-1)|  1/M(l,m)^2  |  M(l,m)    | 1/L(l,m)   |   L(l,m)   |
 ________________|___________________________|_______|__________________|____________________|_____________________|______________|____________|____________|____________|
                 |                           |       |                  |                    |                     |              |            |            |            |
             (1) |                  (2)      |   (3) |       (4)        |        (5)         |        (6)          |      (7)     |    (8)     |    (9)     |    (10)    |
 ________________|___________________________|_______|__________________|____________________|_____________________|______________|____________|____________|____________|

    Core   2.0243                                1.0     12.566370611        12.566370611        12.566370611        12.566370611   0.28209479  12.56637061   0.07957747
 Valence   4.1392                                1.0     12.566370611        12.566370611        12.566370611        12.566370611   0.28209479  12.56637061   0.07957747
  (0, 0)   6.1635               <q>    6.1635    1.0     12.566370611        12.566370611        12.566370611        12.566370611   0.28209479  12.56637061   0.07957747

                                                             l = 1     N(l) = alpha(l)**[n(l)+l+3]/[n(l)+l+2]! =  628.8768     alpha(l) =  6.5007 (1/A)     n(l) = 2

  (1,+1)   0.0349               <x>   -0.0116    1.0      0.000000000         4.188790204         6.276259859         4.188790204   0.48860251   6.27625986   0.15933056
  (1,-1)  -0.0406               <y>    0.0135    1.0     -0.000000000         4.188790204         6.276259859         4.188790204   0.48860251   6.27625986   0.15933056
  (1, 0)   0.0250               <z>   -0.0083    1.0     -0.000000000         4.188790204         6.276259859         4.188790204   0.48860251   6.27625986   0.15933056

                                                             l = 2     N(l) = alpha(l)**[n(l)+l+3]/[n(l)+l+2]! =  681.3529     alpha(l) =  6.5007 (1/A)     n(l) = 2

  (2,+2)   0.3963           <x2-y2>   -0.1057    3.0      0.000000000         3.351032163         5.282328658        30.159289465   0.18209141  15.84698597   0.06310348
  (2,-2)  -1.6884              <xy>    0.1126    6.0      0.000000000         0.837758041         2.657537782        30.159289469   0.18209141  15.94522669   0.06271469
  (2,+1)  -0.2541              <xz>    0.0169    3.0      0.000000000         0.837758041         2.657537782         7.539822367   0.36418281   7.97261335   0.12542939
  (2,-1)   0.4418              <yz>   -0.0295    3.0      0.000000000         0.837758041         2.657537782         7.539822367   0.36418281   7.97261335   0.12542939
  (2, 0)   0.1823         <z2-r2/3>   -0.0162    1.5      0.000000250         1.117010721         3.222584082         2.513274122   0.63078313   4.83387612   0.20687332

                                                             l = 3     N(l) = alpha(l)**[n(l)+l+3]/[n(l)+l+2]! =  514.1617     alpha(l) =  6.5007 (1/A)     n(l) = 3

  (3,+3)  -0.1250       <x(x2-3y2)>    0.0286   15.0      0.000000000         2.872313283         4.691966698       646.270488575   0.03933624  70.37950047   0.01420868
  (3,-3)  -0.5285       <y(3x2-y2)>    0.1208   15.0     -0.000000000         2.872313283         4.691966698       646.270488575   0.03933624  70.37950047   0.01420868
  (3,+2)   0.3212        <z(x2-y2)>   -0.0122   15.0      0.000000000         0.478718880         1.969009371       107.711748104   0.09635371  29.53514057   0.03385797
  (3,-2)  -3.4011             <xyz>    0.0324   30.0      0.000000000         0.119679720         0.992264388       107.711748105   0.09635371  29.76793164   0.03359320
  (3,+1)  -1.1478       <x(5z2-r2)>    0.4373    1.5     -0.000000000         4.787188804         6.241163913        10.771174810   0.30469720   9.36174587   0.10681768
  (3,-1)   0.8046       <y(5z2-r2)>   -0.3065    1.5     -0.000000000         4.787188804         6.241163913        10.771174810   0.30469720   9.36174587   0.10681768
  (3, 0)  -0.5150      <z(5z2-3r2)>    0.2943    0.5     -0.000000000         7.180783206         8.137588892         1.795195802   0.74635267   4.06879445   0.24577304

                                                             l = 4     N(l) = alpha(l)**[n(l)+l+3]/[n(l)+l+2]! =  241.4198     alpha(l) =  6.5007 (1/A)     n(l) = 4

  (4,+4)  -0.5627     <x4-6x2y2+y4>    0.1143  105.0     -0.000000000         2.553167362         4.244354409     28148.670161895   0.00596034 445.65721298   0.00224388
  (4,-4)   1.2686       <xy(x2-y2)>   -0.0161  420.0      0.000000000         0.159572960         1.044537908     28148.670175494   0.00596034 438.70592143   0.00227943
  (4,+3)  -0.9524      <xz(x2-3y2)>    0.0242  105.0      0.000000000         0.319145920         1.589594624      3518.583771468   0.01685839 166.90743557   0.00599134
  (4,-3)  -0.5768      <yz(3x2-y2)>    0.0146  105.0      0.000000000         0.319145920         1.589594624      3518.583771468   0.01685839 166.90743557   0.00599134
  (4,+2)  -0.0266 <(x2-y2)(7z2-r2)>    0.0095    7.5      0.000000000         4.468042883         5.930668747       251.327412183   0.06307831  44.48001560   0.02248201
  (4,-2)  -0.5528   <xy(6z2-x2-y2)>    0.0491   15.0      0.000000000         1.117010721         3.009768589       251.327412243   0.06307831  45.14652883   0.02215010
  (4,+1)   0.2469 <xz(4z2-3x2-3y2)>   -0.0439    2.5      0.000000000         2.234021442         4.207032384        13.962634015   0.26761862  10.51758096   0.09507890
  (4,-1)  -0.0440 <yz(4z2-3x2-3y2)>    0.0078    2.5      0.000000000         2.234021442         4.207032384        13.962634015   0.26761862  10.51758096   0.09507890
  (4, 0)   0.2512 <7z4-6z2r2+3r4/5>   -0.0715    0.6      0.000000299         3.574434306         5.744978698         1.396263401   0.84628438   3.59061169   0.27850408
 _________________________________________________________________________________________________________________________________________________________________________
  (1) VALRAY population coefficients.  Units are A^L.
  (2) Expectation values <A(l,m,p)*r**l>, calculated by numerical volume integration according to equation:
                             __
                            /
         <A(l,m)*r**l> =   /  A(l,m)*(r**l)*Rho(V)*dV
                        __/
                         V
      with l >= 0 and -l <= m <= l, and the integral is over the volume V of the charge distribution.
      The A(l,m)'s are defined according to the VALRAY subroutine ang.f. Units are A^L.
      Values of <A(l,m)*r**l> can be obtained from the population coefficients by equation: (2) = - (1) * (5) / 4*pi.
  (3) Factors C(l,m) convert VALRAY angular functions A(l,m) into the corresponding un-normalized associate Legendre polynomials times cos(|m|p) or sin(|m|p).
  (4) Integral (over the solid angle) of the angular functions used in the VALRAY code.  It is equal to  4*pi * d(l,0) * d(m,0),  where d(i,j) is the Kronecker delta function.
  (5) Integral (over the solid angle) of the squared value of the angular functions used in the VALRAY code. It is equal to 1/[M(l,m) * C(l,m)]**2.
  (6) Integral (over the solid angle) of the absolute value of the angular functions used in the VALRAY code. It is equal to [2 - d(l,0)]/[L(l,m) * C(l,m)].
  (7)-(8) The M(l,m)'s are wavefunction-normalization factors of real spherical harmonics.
  (9)-(10) The L(l,m)'s are density-normalization factors of real spherical harmonics.

 ----------------------------------------------------------------
 TABLE II  -   Unabridged and traceless  cartesian  electrostatic
               multipole  moments (atomic units)
 ----------------------------------------------------------------
               Unabridged  Traceless    Tracelesss   Traceless
               from direct from direct     from    from spherical
                numerical   numerical   unabridged    harmonic
               integration integration    moments     moments
 ----------------------------------------------------------------
       <q> =       6.1635      6.1635      6.1635      6.1635
       <x> =      -0.0220     -0.0220     -0.0220     -0.0220
       <y> =       0.0256      0.0256      0.0256      0.0256
       <z> =      -0.0158     -0.0158     -0.0158     -0.0158
      <xx> =      -4.9151     -0.2396     -0.2396     -0.2396
      <xy> =       0.4020      0.6029      0.6029      0.6029
      <yy> =      -4.5377      0.3264      0.3264      0.3264
      <xz> =       0.0605      0.0907      0.0907      0.0907
      <yz> =      -0.1052     -0.1578     -0.1578     -0.1578
      <zz> =      -4.8132     -0.0868     -0.0868     -0.0868
     <xxx> =      -0.4413     -0.9861     -0.9861     -0.9861
     <yyy> =       0.1609      0.2661      0.2661      0.2661
     <zzz> =       0.3636      0.9930      0.9930      0.9930
     <xyy> =      -0.2113     -0.4893     -0.4893     -0.4893
     <xxy> =       0.3254      0.7680      0.7680      0.7680
     <xxz> =      -0.2511     -0.5997     -0.5997     -0.5997
     <xzz> =       0.5745      1.4754      1.4754      1.4754
     <yzz> =      -0.3955     -1.0342     -1.0342     -1.0342
     <yyz> =      -0.1685     -0.3933     -0.3933     -0.3933
     <xyz> =       0.2186      0.5465      0.5465      0.5465
    <xxxx> =     -21.3634      0.5460      0.5460      0.5460
    <yyyy> =     -19.8156      0.6214      0.6214      0.6214
    <zzzz> =     -21.2052     -0.5696     -0.5696     -0.5696
    <xxxy> =       0.6677     -0.6452     -0.6452     -0.6452
    <xxxz> =       0.2598      0.5997      0.5997      0.5998
    <yyyx> =       0.8732      0.2536      0.2536      0.2536
    <yyyz> =      -0.2707     -0.2511     -0.2511     -0.2511
    <zzzx> =       0.0427     -0.3498     -0.3498     -0.3498
    <zzzy> =      -0.1990      0.0623      0.0623      0.0623
    <xxyy> =      -7.1061     -0.8685     -0.8685     -0.8685
    <xxzz> =      -7.0202      0.3225      0.3225      0.3225
    <yyzz> =      -6.7823      0.2471      0.2471      0.2471
    <xxyz> =      -0.0280      0.1887      0.1887      0.1887
    <yyxz> =      -0.0162     -0.2499     -0.2499     -0.2499
    <zzxy> =       0.3612      0.3916      0.3916      0.3916
       <r> =       3.9055
      <r2> =       3.9949
      <r3> =       5.2138
      <r4> =       8.1711
    Volume =       4.3812
 ----------------------------------------------------------------

Tables I and II are repeated for all atoms in the system. Finally, molecular unabridged and traceless cartesian moments are reported in Table III.

 ----------------------------------------------------------------
 TABLE III -   Molecular electrostatic multipole  moments
               (Standard units: electrons, debye, etc.)
               (Center of mass:   3.07830   1.62328   2.69767)
 ----------------------------------------------------------------
               Unabridged  Traceless
               from direct from direct
                numerical   numerical
               integration integration
 ----------------------------------------------------------------
       <q> =       0.0000      0.0000
       <x> =      -0.2603     -0.2603
       <y> =      -0.5758     -0.5758
       <z> =     -12.6087    -12.6087
      <xx> =     -29.6771      1.5492
      <xy> =       3.9975      5.9962
      <yy> =     -31.7067     -1.4952
      <xz> =      -5.5111     -8.2667
      <yz> =      -1.6818     -2.5227
      <zz> =     -30.7459     -0.0540
     <xxx> =       4.9149    -15.7851
     <yyy> =      -3.3307     -0.7171
     <zzz> =     -35.0513     -5.2494
     <xyy> =       1.2793     -6.1593
     <xxy> =       0.4396      3.6355
     <xxz> =     -13.5106     -6.3169
     <xzz> =      12.5207     21.9443
     <yzz> =      -2.1820     -2.9185
     <yyz> =      -6.3573     11.5663
     <xyz> =       1.4951      3.7378
    <xxxx> =    -200.1083    -11.2433
    <yyyy> =     -74.3526     39.0782
    <zzzz> =    -301.2096     -2.8173
    <xxxy> =       9.5709      2.8916
    <xxxz> =     -37.7602    -22.0847
    <yyyx> =       5.5317    -14.7800
    <yyyz> =     -12.3650     25.0917
    <zzzx> =     -30.3720     10.2383
    <zzzy> =     -25.7109    -33.2966
    <xxyy> =     -50.3070    -15.3261
    <xxzz> =     -76.9443     26.5694
    <yyzz> =     -69.4041    -23.7521
    <xxyz> =      -4.1580      8.2050
    <yyxz> =      -8.1963     11.8463
    <zzxy> =       5.6874     11.8885

    Dipole =      12.6246     12.6246

 Stewart-DMA Elapsed CPU time:  0 days  0 hours  0 minutes  1.7 seconds.

Restrictions

The option is valid only if a multipole expansion of the charge density is available in terms of Stewart's pseudoatoms.

Related Keywords

stw.