PAMoC User's Manual

IGS | IntGrid | NumAcc

Synopsis

[-](igs|intgrid|numacc)   ±N

Description

This keyword (Integration Grid Selection) specifies the integration grid to be used for numerical integrations. Both "pruned" and "unpruned" grids can be specified. Pruned grids are grids that have been optimized to use the minimal number of points required to achieve a given level of accuracy. Pruned grids are used by default when available (currently defined for H through Kr).

Specific grids may be selected by giving an integer value N as the argument to the option. N may have one of these forms:

Remarks

Only one radial quadrature scheme was available in PAMoC versions prior to 2012, namely the Nr-point Euler-Maclaurin quadrature formula which, in this context, corresponds to a (Nr + 2)-point semi-open extended trapezoidal rule combined with Handy's transformation of the radial coordinate.[1Murray, C. W.; Handy, N. C.; Laming, G. J.
Mol. Phys. 1993, 78, 997-1014.
, 2Gill, P. M. W.; Johnson, B. G.; Pople, J. A.
Chem. Phys. Lett. 1993, 209, 506-512.
]
In the current version of PAMoC, the choice of the radial integration rule is controlled by keyword radrule, which allows the user to choose among several quadrature schemes and has a default value different from Euler-Mclaurin.
Then, the integration grid selection keyword   (igs|intgrid|numacc)   is used mainly to set the number of radial and angular points together with the pruning scheme (i.e. pruned/unpruned grid). Only in the case of N = 11, it completely define the grid, irrespectively of the value of keyword radrule.

Related Keywords
References
  1. "Quadrature schemes for integrals of density functional theory"
    Murray, C. W.; Handy, N. C.; Laming, G. J. Mol. Phys. 1993, 78, 997-1014.
  2. "A standard grid for density functional calculations"
    Gill, P. M. W.; Johnson, B. G.; Pople, J. A. Chem. Phys. Lett. 1993, 209, 506-512.
  3. "Radial Quadrature for Multiexponential Integrands"
    Gill, P. M. W.; Chien, S.-H. J. Comput. Chem. 2003, 24, 732-740.
  4. "SG-0: A Small Standard Grid for DFT Quadrature on Large Systems"
    Chien, S.-H.; Gill, P. M. W. J. Comput. Chem. 2006, 27, 730-739.
  5. (a) "Values of the nodes and weights of ninth to seventeenth order Gauss-Markov quadrature formulae invariant under the octahedron group with inversion"
    Lebedev, V.I. USSR Comp. Math. and Math. Phys. 1975, 15(1), 44-51. Zh. vychisl. Mat. mat. Fiz. 1975, 15(1), 48-54.
    (b) "Quadratures on a sphere"
    Lebedev, V.I. USSR Comp. Math. and Math. Phys. 1976, 16(2), 10-24. Zh. vychisl. Mat. mat. Fiz. 1976, 16(2), 293-306.
  6. "Spherical quadrature formulas exact to orders 25-29"
    Lebedev, V.I. Siberian. Math. J. 1977, 18(1), 99-107. Sibirskii Matematicheskii Zhurnal 1977, 18(1), 132-142.
  7. "Quadrature formulas of orders 41, 47, and 53 for the sphere"
    Lebedev, V. I.; Skorokhodov, A. L. Russian Acad. Sci. Dokl. Math. 1992, 45, 587-592.
  8. "A quadrature formula for the sphere of 59th algebraic order of accuracy"
    Lebedev, V. I. Russian Acad. Sci. Dokl. Math. 1995, 50, 283-286.
  9. "A quadrature formula for the sphere of the 131-st algebraic order of accuracy"
    Lebedev, V.I.; Laikov, D.N. Dokl. Math. 1999, 59, 477-481.