N | (Nr, NΩ) | L | Description | Ref. |
1 | (50,194) | 23 |
50-point radial quadrature and
194-point Lebedev angular quadrature. See the
2,
Gill, P. M. W.; Johnson, B. G.; Pople, J. A.
Chem. Phys. Lett. 1993, 209, 506-512.
5(a) Lebedev, V.I.
USSR Comp. Math. and Math. Phys. 1975, 15(1),
44-51. Zh. vychisl. Mat. mat. Fiz. 1975,
15(1), 48-54. (b) Lebedev, V.I.
USSR Comp. Math. and Math. Phys. 1976, 16(2),
10-24. Zh. vychisl. Mat. mat. Fiz. 1976,
16(2), 293-306.
|
2 | (75,302) | 29 |
75-point radial quadrature and
302-point Lebedev angular quadrature. See the
Gaussian integral option: FineGrid. |
2,
Gill, P. M. W.; Johnson, B. G.; Pople, J. A.
Chem. Phys. Lett. 1993, 209, 506-512.
6Lebedev, V.I.
Siberian. Math. J. 1977, 18(1), 99-107.
Sibirskii Matematicheskii Zhurnal 1977, 18(1),
132-142.
|
3 | (99,590) | 41 |
99-point radial quadrature and
590-point Lebedev angular quadrature. See the
Gaussian integral option: UltraFine. |
2,
Gill, P. M. W.; Johnson, B. G.; Pople, J. A.
Chem. Phys. Lett. 1993, 209, 506-512.
7Lebedev, V. I.; Skorokhodov, A. L.
Russian Acad. Sci. Dokl. Math. 1992, 45, 587-592.
|
4 | (110,770) | 47 |
110-point radial quadrature and
770-point Lebedev angular quadrature |
2,
Gill, P. M. W.; Johnson, B. G.; Pople, J. A.
Chem. Phys. Lett. 1993, 209, 506-512.
7Lebedev, V. I.; Skorokhodov, A. L.
Russian Acad. Sci. Dokl. Math. 1992, 45, 587-592.
|
5 | (150,974) | 53 |
150-point radial quadrature and
974-point Lebedev angular quadrature. See the
Gaussian integral option: SuperFineGrid. |
2,
Gill, P. M. W.; Johnson, B. G.; Pople, J. A.
Chem. Phys. Lett. 1993, 209, 506-512.
7Lebedev, V. I.; Skorokhodov, A. L.
Russian Acad. Sci. Dokl. Math. 1992, 45, 587-592.
|
6 | (185,1202) | 59 |
185-point radial quadrature and
1202-point Lebedev angular quadrature |
2,
Gill, P. M. W.; Johnson, B. G.; Pople, J. A.
Chem. Phys. Lett. 1993, 209, 506-512.
8Lebedev, V. I.
Russian Acad. Sci. Dokl. Math. 1995, 50, 283-286.
|
7 | (225,5810) | 131 |
225-point radial quadrature and
5810-point Lebedev angular quadrature |
2,
Gill, P. M. W.; Johnson, B. G.; Pople, J. A.
Chem. Phys. Lett. 1993, 209, 506-512.
9Lebedev, V.I.; Laikov, D.N.
Dokl. Math. 1999, 59, 477-481.
|
N | (Nr, Nθ, Nφ) | L | Description | Ref. |
8 | (50,15,30) | 29 |
50-point radial quadrature and
450-point spherical product quadrature
[Nφ ≡ L + 1 =
30, Nθ =
Nφ/2 = (L + 1)/2 = 15,
NΩ =
Nθ⋅Nφ =
(L + 1)2/2 = 450] |
2Gill, P. M. W.; Johnson, B. G.;
Pople, J. A. Chem. Phys. Lett. 1993, 209,
506-512. |
9 | (75,25,50) | 49 |
75-point radial quadrature and
1250-point spherical product quadrature
[Nφ ≡ L + 1 =
50, Nθ =
Nφ/2 = (L + 1)/2 = 25,
NΩ =
Nθ⋅Nφ =
(L + 1)2/2 = 1250] |
2Gill, P. M. W.; Johnson, B. G.;
Pople, J. A. Chem. Phys. Lett. 1993, 209,
506-512. |
10 | (99,48,96) | 95 |
99-point radial quadrature and
4608-point spherical product quadrature
[Nφ ≡ L + 1 =
96, Nθ =
Nφ/2 = (L + 1)/2 = 48,
NΩ =
Nθ⋅Nφ =
(L + 1)2/2 = 4608] |
2
Gill, P. M. W.; Johnson, B. G.; Pople, J. A.
Chem. Phys. Lett. 1993, 209, 506-512.
|
N |
(Nr, NΩ) |
L |
Description |
Ref. |
11 |
(23,170) (26,170) |
21 |
either 23-point MultiExp radial quadrature for H to F
or 26-point MultiExp radial quadrature for Na to Cl combined
with 170-point Lebedev angular quadrature
(reported as SG-0 grid) |
3,
Gill, P. M. W.; Chien, S.-H.
J. Comput. Chem. 2003, 24,
732-740.
4Chien, S.-H.; Gill, P. M. W.
J. Comput. Chem. 2006, 27, 730-739.
|